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In this paper we motivate and describe an algorithm to solve the nonlinear programming
problem. The method is based on-an exact penalty function and possesses both global and
superlinear convergence properties. We establish the global qualities here (the superlinear
nature is proven in [7]). The numerical implementation techniques are briefly discussed and
preliminary numerical results are given.
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1. Introduction

The nonlinear programming problem can be described as
minimize  f(x),
subject to ¢;(x)=0, i=1,...,m, (1.1

where m is a positive integer, and f, ¢, i =1,...,m are twice continuously
differentiable and map R” to R'. (Our method and the theoretical results are not
limited to the inequality constrained problem: we omit the equality constraints in
this paper, to simplify the presentation.) The major purpose of this paper is to
describe and motivate a procedure to solve (1.1), and to establish that this
method possesses global convergence properties (regardless of starting point).
The method has a fast (2-step superlinear) asymptotic convergence rate: this is
established in [7].

In Section 4 we describe a sound numerical procedure to implement the
conceptual algorithm, and we present some preliminary numerical results in
Section 6.

2. Motivation

The method is based on the minimization of an exact penalty function p, given
below in (2.1). This unconstrained function p is not readily minimized by
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138 T.F. Coleman and A.R. Conn| Nonlinear programming: Global analysis

conventional gradient techniques because it is not everywhere differentiable.
Nevertheless, it was demonstrated in [9] that conventional techniques can be
adapted to enable the numerical minimization of p. In broad terms, the approach
in [9] is as follows: At the current point separate p into two parts—the
differentiable part (including the objective function and the clearly inactive
constraints), and the nondifferentiable part (including the nearly active con-
straints). A useable descent direction is then derived by attempting to decrease
the first (differentiable) part of p while trying to maintain the value of the second
(nondifferentiable) part of p. In [9], a numerical method was given to obtain
these two objectives up to first-order changes. (Thus, a projected gradient
method was described.) Here we obtain the two objectives up to second-order
changes. (Thus we describe a projected Newton method.) We note that in both
cases well-established numerical techniques can be used.

2.1. The horizontal direction, h

We suggest transforming (1.1) into

minimize p(x, p) = f(x) % 3 min(0, ¢:(x)), @.1)
X i=1

where u is a positive scalar.

Since, under certain conditions, local minima to (2.1) are also solutions to
(1.1), the unconstrained minimization of this exact penalty function p may yield
a solution to (1.1) [4,5,6]. The major difficulty in designing an algorithm to
minimize p is: how do we overcome the nondifferentiable nature of p?

Let us consider this problem in detail. Let € be a ‘small’ positive number used
to identify the near-active (or, e-active) constraint set and suppose that the first ¢
constraints are e-active at x'. That is, suppose

6 =e i=1,..,1, 2.2)
and
di(x)<—¢ i=t+1,..,m. (2.3)

(The clearly feasible constraints do not affect this argument, so we assume, for
the present, that there are none.)
Let

i=t+

p,(x)=f(x)—f; il (%),

and thus, in a neighbourhood of x',

p(x) = px(x)—ig‘,l min(0, ¢:(x)). 2.4)
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Clearly p, is differentiable over R"; we can view p, as the differentiable portion
of p in a neighbourhood of x'. To develop a first-order method to minimize p,
we should consider minimizing the first-order change in p. That is, if we are at
the point x', and B is some positive scalar, we should consider solving

t
minimize Vp,(x)Th -+ 3"V Th", 2.5)
h, |lh|=p K=

where the quotations are used here to indicate terms of that form. That is, ‘a’ is
either 0 or —|a|. (We use ‘h’ instead of the more usual ‘d’ since our development
will eventually lead to a direction termed the horizontal direction, to contrast
with a vertical direction v, introduced later and satisfying h™v = 0.) Here, and
throughout this paper, we use the convention that the expression | - || will denote
the Euclidean norm unless it is specifically indicated otherwise.

Clearly the computing of a direction to solve (2.5) will be nontrivial due to the
awkward term in quotations. The occurrence of this term is due, of course, to
the nondifferentiable nature of p at constraint boundaries. If we could restrict h
so that

VoTh=0, i=1,..,1 (2.6)

then we would have a computable problem. That is, let us attempt to find a
direction h which minimizes the change in the penalty function p (up to
first-order terms) subject to the change in the active constraints being zero (up to
first-order terms). Thus our constrained direction finding problem is,

minimize Vp;(x")"h,

h, =B
2.7
subjectto Vo h=0, i=1,..,t.
The solution to (2.7) is
h* = — aPVp,(x", (2.8)
where P is the orthogonal projector onto the space orthogonal to V¢, i =1, ..., t.

(We assume for the moment, that PVp,# 0, and « is chosen so that ||h*|| = B.)

The method of Conn and Pietrykowski [9] is, in large, based on the above
observations. This method has global convergence properties but possesses (in
general) only a linear convergence rate. Clearly we can expect no more since h*
is obtained by minimizing only up to first-order terms.

Let us consider attempting to find a direction which minimizes the change in
the penalty function p (up to second-order terms) subject to the change in the
active constraints being zero (up to second-order terms). That is, consider

t
minimize VpTh +3h"V?p,h — ;-1; "V ih+3h"V:eh", (2.9)
h i=1

subjectto Vérh +3h"Vph =0, i=1,..,¢t
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Clearly (2.9) is equivalent to
minimize Vpih+3h"V’p,,h, (2.10)
h

subjectto VoTh+3h"Vph =0, i=1,..,t.

Unfortunately, a solution to (2.10) cannot be explicitly computed. We can,
however, obtain a computable and useable approximation to problem (2.10) in
the following way. Problem (2.10) is equivalent to

min max L(h, A\) =VpTh +3h"™V’ph
h A
t
— 3 M(VoTh +3h"V¢h), (2.11)
i=1
which we can approximate by
t t
min max L(h, \) = VpTh + 1h™V?p,h — % S ARVieh— S AVoTh,
h A i=1 i=1
or
min max L(h, \) = %W’(ﬁ;1 > XiV2¢i>h
: .
(Vm E Ai Vd>.), (2.12)

where X is a computable approximation to A. (We discuss this approximation
later.) Differentiating L with respect to A gives

VéTh=0, i=1,..,¢t. (2.13)

Let us define a matrix A = (V¢ (x"),...,Vd,(x") and an n X(n —t) matrix Z
satisfying '

ATZ =0, (2.14)
Z"Z =Iy. (2.15)
Thus by (2.13) we can use the transformation h - Zw, and (2.12) becomes
‘ ,
min %wTZT(Vzpl -3 X,-v2¢,-)2w +VpTZw. (2.16)
w i=1

If Z"(Vp;— 3. AV?$:)Z is positive definite, then the solution to (2.16) can be
obtained by solving

(Zf(Vzpl —2 Xivqui)z)w = - Z"p.. 2.17)

We gain an approximate solution to our original system (2.10) by setting

h* « Zw*, where w* solves (2.17).
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Provided Z'Vp,# 0, the direction h* is a descent direction for p, at x'. In
addition, as our development suggests, h* is the second-order analog of the
projected first-order direction (2.8), used by Conn and Pietrzykowski [9]. In
practise, the projected Hessian need not be computed but rather approximated
by a positive definite matrix, Z"BZ. Since the sufficiency conditions for p ensure
that the true projected Hessian is positive definite at a local minimum of p[6], it
is reasonable to restrict the projected Hessian approximating matrices to this
class.

This is not the full story, however. In particular, when ||Z"Vp,|| is ‘large’ (and
thus we are likely far from a stationary point of p([6]; this paper, Section 5), dual
estimates {)\;} have little meaning. In addition, when far from a stationary point
of p, the objective function and the violated constraints should dominate the
penalty function changes: it is reasonable then, in this region, to ignore the
second-order changes in the current activities. Thus, when far from a stationary
point, Z"BZ is a positive definite approximation to Z'V’p,Z, and A is not
computed. (Alternatively, one can view A as being approximated by the zero
vector.)

2.2. The dual estimates, A

Let us suppose that {x*}— X, where % is a stationary point for p (see [6]). By
definition there exists a vector A such that

Vf(i)—%g,_Vcbi(fP > AVei(x), (2.18)

i€l
where I; and I; are the violated and the active constraint sets of x. That is,
L={i| ¢:(x) <0},
and
Iz ={i| ¢:(x)=0}.
Similarly, we define
L") ={i | 1) = e},
and
IsxY={i | d:i(x*)<—€}, where € >0.
Clearly, if for all k sufficiently large, I5(x*)=I4, and I5(x*)=1I;, then A* >\,

where A* is a least-squares solution to

1
A =Vf(x")—= Voi, :
K f(x9) “ielzu()xk) ¢ (2.19)

where ¢f = ¢i(x*), Ay =V}, ..., V1), and t, = |[I5(x")|. Define an n x (n —t,)
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matrix Z, so that Z, satisfies

AYZ, =0, (2.20)

and
Ziz,. =  (—y" 2.21)

It follows that if the active and violated constraints have been correctly
identified then || Z{Vp| >0, as x* - X, where

v k 1 k
Tp = Vi -y 3 Vel
(We call Vp the pseudo-gradient of p.) Thus, when |Z{Vp| becomes sufficiently
small the least-squares solution to (2.19) will usually give reasonable estimates to
the multipliers {X;} used in (2.18). Conversely, if | ZVp| is large the least-squares
solution to (2.19) will likely bear little similarity to A (particularly if I <(x*) # I).
The actual computation of the least squares solution to (2.19) will be discussed
in Section 4.

2.3. The vertical step, v

Let us suppose that x* satisfies the second-order sufficiency conditions for
problem (2.1) [6]. Further, we suppose that € and ||x* — x*|| are sufficiently small
so that I4(x*)=1I% and I3(x*)=1I%. The horizontal direction h* (obtained by
solving a system similar to (2.17)) decreases p, while attempting to keep the
activities constant. But, at x* the activities are not precisely zero (they are
e-active). In addition, the step in the direction h* will change the active
constraint values to some degree. Therefore, it seems reasonable to try and
satisfy the e-active constraints more precisely, when x* is close to x*. We do
this by means of a vertical step, v*:

v* = — A(ATA) ' D (x* + ah®), 2.22)

where @ is the vector of active constraint values, ordered in the same fashion as
Ay, Ay is the n X t, matrix of active constraint gradients, evaluated at x*, and «y
is the stepsize. (We assume, for the purposes of description, that the columns of
A, are linearly independent; v* is not computed in this fashion—we describe the
computation in Section 4.)

Note that with the use of a Taylor expansion, it can be seen that
D (x* + bt + v*) = d(x* + h*) — A"
= 0.
2.4. Dropping a constraint

Again let us suppose that {x*}—> %, where % is a stationary point for p. Thus
(2.18) will be satisfied (by definition). But suppose that A;& [0, 1/n]. Consider the
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direction
h = 0P’V ¢;(%), (2.23)

where o; = — sgn(};), and P’ projects orthogonal to {V¢;(%X) | i €I;—{j}}. Assum-
ing that the gradients of the active constraints at X are linearly independent, it is
easy to see that (2.23) gives a descent direction for p, at X (part 2 of Theorem 1)

If x* is sufficiently close to %, and I <(x"*) = I, then the multiplier estimate, PR
will satisfy

AFE0, 1pl. (2.24)
It is then easy to show that there is a neighbourhood of x in which
h* = o} PiVei(x") = 0} Ziny Zin Vi (x") (2.25)

is a descent direction for p at x*. The matrix Z,+; satisfies ZI\jZk\,- = I+ and
Véi(x")'Z; =0 if i € Ia(x")—{j}.

We note that dropping a constraint and attempting a vertical step are com-
plementary activities. When 1Z¥p| 1s ‘small’ the dual variables {A{} are com-
puted: a vertical step is attempted if A¥e€[0,1/u] for all i in I5(x*), otherwise we
attempt to drop a constraint. (The size of |ZiVp| and the vector A indicate

whether or not to attempt these steps—the indicated step is usually taken only if
a sufficient decrease in p can be guaranteed.)

2.5. Direction choice strategy

We have defined 3 directions:

(0] h* = — ZW(ZiBWZy) ' ZiVp (x¥), (2.26a)
(ii) v¥ = — AATA) ' D (x* + axh®), (2.26b)
(iii) h* = 0t Zi Z iV di(x). (2.26¢)

Determining the optimal combination of directions to use in any given circum-
stance (in combination with the best modification strategy for €) goes beyond the
scope of this paper. Here we suggest a strategy which is both simple and
reasonable for the well-scaled problem. The theoretical results will be limited to
this simple algorithm, however, it is clear that more complicated strategies could
be used without violating the convergence properties.

When ||ZiVp| is ‘large’, that is when ||ZiVp||> A, we choose to use only the
direction h*, where Z}B\Z; approximates

ZH(VIEN - 3, Vi)
|EI‘(x)

When ||ZiVp|| < A, then the multiplier estimates become important. A direction
(iii) is attempted if there exists a multiplier estimate which is not in the range
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[0, 1/u]. If this is the case, then direction (iii) is accepted only if a sufficient
decrease can be guaranteed: that is we use h* if

(Vp + min(0, c)V¢;)"h* <—8, for some & >0, (2.27)
and

of =—sgn(Af), AFE[0,1/pl. (2.28)

If either of the above situations occur, then a stepsize o, must be determined,
and

x e x*k + ah* (2.29)

or

e x* + bt
Since p is a piecewise differentiable function, we use a special line search which
we describe in the next section.

The second use of the multiplier estimate is to properly include constraint
curvature information in the Hesian approximation. That is, when | ZiVp| = A,
ZtB\Z, approximates ‘

zi(vf et LS Ve - S ATeeh)z (2.30)
M ieTt(xk ielg (x5

In addition, provided the multiplier estimates are in the range [0, 1/u], our search

direction becomes

d*=h*+ o~

Here we attempt a stepsize of one: if a sufficient decrease is not observed then a
line search is performed along the direction h*.

We have chosen to use a very simple strategy to modify € and A. If the
dropping step (iii) or the ‘Newton step’ h*+ v* are unsuccessfully attempted,
then we reduce both parameters by a factor of 2. The initial choice of €, A is
arbitrary provided €, A > 0.

We realize that the direction choice mechanism described above is somewhat
arbitrary. As the form of the convergence proof will demonstrate, there are any
number of selection rules which will supply global convergence properties. The
particular process we have described is based on limited numerical testing. (It is
quite possible that further and more specialized numerical experimentation will
suggest an alternative selection scheme.)

In the next section we present statements of the basic algorithm and a
sub-algorithm (the special line search). The implementation of the numerical
procedures is duscussed in the following section.
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3. Algorithms

In this section we describe three algorithms. Algorithm 1 is the line search
procedure designed to exploit the piecewise nature of p. Algorithm 2 is our basic
method designed to minimize p with any given but fixed u. Finally, we describe
Algorithm 3: this procedure is wrapped around Algorithm 2 and automatically
reduces w when it appears that w is too large (that is, when it appears we are not
converging to a point feasible to (1.1)).

3.1. Line search procedure

Since a stepsize of unity is always taken when we are in a neighbourhood of x*
(a point satisfying second-order sufficiency conditions) it is expected that this
procedure will be used only when ‘far’ from a solution.

Suppose that we are at a point x' €R" and that we have determined a
direction h as in (2.26). If the functions f, ¢, i = 1, ..., m are all linear, it is easy
to see that either p is unbounded below in the direction h, or a minimum (along
h) occurs at a ‘breakpoint’ of p. (X is a breakpoint along h, if for at least one
j€& Ia(x"), ¢;(¥)=0. Since we are describing the linear situation here, we can
assume that € =0.) Thus an algorithm to determine the minimum of p, in the
direction h is straightforward: determine all breakpoints and find the minimum
penalty function value at these breakpoints. Let us consider this linear case in
more detail.

Suppose that y' is the first breakpoint along the (positive) direction h from x',
corresponding to the function ¢,. Thus, ¢(y") =0, and ¢,(x") #0. Since h is a
descent direction for p at x', it follows that Vp(x")"h < 0. But the pseudo-gradient
of p, Vp, will remain unchanged (and thus p will continue to decrease) until y' is
reached (y,=x'+ ah, where a;=—¢(x")/VdT1h). As we move past y' the
pseudo-gradient of p becomes

Tp(y'+Ah) = Vp(x‘)+-i—sgn(V¢Th)V¢l,

where ‘A’ is any small but positive quantity. (We assume, for descriptive
purposes, that the breakpoints are distinct.) Clearly if Vp(y'+ Ah)"h =0, then y'
is a minimum of p in the direction h. If Vp(y'+ Ah)"h <0, p continues to
decrease along h—thus the next breakpoint is determined and the argument is
repeated. If we progress through the entire sorted list of breakpoints and p
continues to decrease past the last breakpoint then the procedure returns with a
pointer indicating unboundedness.
Define Iy = {1, ..., m}, and I, = Ia(x") = {i € Iy | ¢(x") = 0}.

Algorithm 1. (the line search—Ilinear case).
Step 1: ao < Vp"™h <0 (by assumption),
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yi —— di(x)IVoih, i€ Iy\Iy,
Ly—{i€y\I, l vi > 0},
k <0, lg <0, vo < 0.

Step 2: If I, = ¢, return with a message that p is unbounded below.
Step 3: Determine [, such that

=7, Vi€,
g+ < ax t oy, - V¢ﬁh, (o, = sgn(Vd)ih)).

Step 4: If a,,, =0, go to Step 5
else Iy < I —{l}
k —k+1, go to Step 2.
Step 5: x>« x'+ y,h return.

The extension of this procedure is not difficult if we are content with
estimating the location of a possible minimum breakpoint along h. (Note that, in
the nonlinear case, the minimum of p along h need not be a breakpoint.) Our line
search makes linear approximation to all functions and, with two exceptions,
performs the version of Algorithm 1 listed above. In the nonlinear case, I, = ¢
does not imply p is unbounded. Thus Step 2 is replaced with

Step 2': If I, = ¢ and k =0, vy, <0, go to Step 5.
If =¢ and k>0, y, <, ,, g0 to Step 5.

The procedure we have described thus far is clearly not sufficient since the point
that is returned, x%, does not (due to nonlinearity) necessarily satisfy

p(x*) <p(x".

We rectify this situation in the following way. Let § be a ‘small’ positive
constant. Step S is replaced with

Step 5: x*<—x'+y,h
If (p(x*) <p(x") — §) return,
else
perform a cubic interpolation minimization between x' and
x'+rh, r>0;
return.

(Since Vp™h <0 and p (excluding the ‘active’ constraints) is continuously
differentiable on some interval (x', x' + th), 7 > 0, the cubic routine can be used
successfully [9].)

It should be noted that the cost of attempting to choose a breakpoint is at most
one penalty function evaluation.
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In general, line searches are dispensed with altogether when in a neighbour-
hood of a solution, as we expect to take stepsizes of one.
(The reader is referred to Murray and Overton [12] for an alternative piece-

wise line search.)

}

Defermine a; via
A!jarifhm I
)(.“‘ A Xk"' ag

k <k :l
IJenf’if/ I/\A

hk

(- J W -2 (Zk Bkzk)—‘Z: GPJ
So/ve
ANt = p L

K P T
h™ < g Zk\J‘Zk\J vé;

N ¢ [0.1/u]
7

NO

W -2 (ZiBZ) Zhap
Selve: ATv" ~-8 (x*+h")

[7)0 + min (O, Jj) V¢J‘}Thk
<-4
?

NO
e
(e 5
/\k (—_/_\_k
2
kal(__ )(k"hk"\/k Idenfi{y I;‘k
k< k+I

Fig. 1. Flowchart of Algorithm 2.
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3.2. Minimizing p (with fixed w)

In Fig. 1 we present a flowchart of our algorithm designed to minimize the
exact penalty function for a fixed w > 0. The user must supply an initial guess
for x° In addition, the positive parameters A and e are initially arbitrary. The
global convergence properties are unaffected by this initial assignment, however,
the efficiency of the program can be adversely affected by inappropriate choices.
What is, and is not, an appropriate choice is a difficult question to answer a
priori: we have not attempted to address this question or the closely related
scaling problem in this paper. In the numerical results section we give the testing
interval which was used for each parameter on the test problems (most of which
are well scaled). The parameter 8§ is assumed to be sufficiently small and is not
modified by Algorithm 2.

In the flow-chart (Fig. 1), as well as in the proofs, we use the following
notational rule: if a quantity is sub- or super-scripted, then it may change from
iteration to iteration in Algorithm 2—if a quantity is not sub- or super-scripted
the quantities remain constant.

The algorithm, as it stands, generates an infinite sequence of points (or, if

k= x*, it cycles). In practice, Algorithm 2 is terminated when all of the
following conditions hold:

(1) AfE€[0,1/u] for all j € I5(x"),

) |ZxVp(x")| =TOL,

3) |&(x*)| <TOL.

Note that after the ‘Newton step’ has been successful the e-active set is not
re-identified until a ‘Newton step’ is not taken.

There are a number of possible variants of Algorithm 2. They include:

(1) attempting vertical steps in conjunction with non-unit steps along h*,

(2) performing line-searches along v*, or h* + v*,

(3) including second-order information in the dropping step.

Algorithm 2 then, is a procedure to minimize p for a given and fixed wu. If w is
less than a threshold value then the solution will usually also solve the nonlinear
programming problem (1.1). Since our objective is to solve (1.1) we may wish to
interrupt Algorithm 2 (and restart with a smaller ) if it appears u is too large.

3.3. Algorithm 3 (reducing p)

In some cases there exists a threshold value for w, say o, such that if u =< p,,
local minima of p(x, ) are also local solutions to (1.1). This value is unknown a
priori (it is a function of the Kuhn-Tucker multipliers [6]), therefore an initial
choice of p may be too large, in which case optima of p may be infeasible or
indeed p may be unbounded below. Nevertheless, experience suggests that
recognizing when p is too large (during the p-minimization) is usually not a
difficult task and a simple reduction of the form p < u/10 seems quite adequate.
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In particular, when w, does exist, the number of reductions of u will be finite
and thus the asymptotic convergence rate is dependent only on the con-
vergence rate of Algorithm 2, which is independent of u.

We must periodically check for 2 possibilities:

(i) {x*} is converging to an infeasible point,

(ii) {¢;(x*)}—>— for some j.
Our response to possibility (i) is to reduce p but continue decreasing p from the
current x*. Possibility (ii) is handled by reducing p and restarting the procedure
from the original starting point. (An alternate strategy to handle (ii) is to first find
a feasible point by applying Algorithm 2 to problem (1.1) with f(x) replaced by a
constant function. If a feasible point is found, then Algorithm 2 can be restarted
with this feasible starting value.) We note that the above strategies are not
guaranteed to work however they are reasonable and have been successfully
used by the authors.

4. Implementation techniques

Many of the numerical techniques used by Gill and Murray [10] for the
linearly constrainted problems are easily adapted to this method for the non-
linearly constrainted problem. We sketch the basic ideas here: the reader is
referred to the works of Gill and Murray (see also Murray and Wright [11]) for
further details.

4.1. The vertical step and estimating duals

Suppose that A is n X t with linearly independent columns. Then, there exists
an n X n orthogonal matrix Q such that

A=Q- R
where

R oy :
R = ( 0) and R is t Xt and upper triangular.

Clearly then, the dual estimates can be computed by solving |
Rx=Q'Vp 4.1)
where Q represents the first ¢t columns of Q. Similarly, the vertical step can be
computed by solving
R™% = - &(x*+h") (4.2)

and then setting v « QW.
Consider a single iteration: x* - x**'. In general, at x* there will be a number
of active linear and nonlinear constraints at x*. At x**! the linear constraints will




150 T.F. Coleman and A.R. Conn|[ Nonlinear programming: Global analysis

remain active and thus the columns of A corresponding to these constraints do
not change. The columns of A corresponding to the nonlinear constraints will
change entirely (in general) whether the nonlinear constraint set changes or not.
Therefore we maintain a partition of A so that linear constraints always precede
nonlinear constraints. (It is easy to see that this is always possible.)

The mechanisms for adding and deleting constraints (and thus modifying the
QR factors) are essentially those of Gill and Murray [10]l—we omit the details
here. Linear dependence is detected in the following way: if a vector ‘a’ is to be
‘added’ to A but is dependent (numerically) on the current columns (detection of
linear dependence follows automatically from the QR updating process) then ‘a’
is not added. From Theorem 1, part 1 it follows that if we are far from a
stationary point, then ‘a’ can be ignored with impunity. If we are in a region in
which the dual estimates must be computed, then the existence of dependencies
can be troublesome. We follow the perturbution strategy of Bartels et al. [2]: all
dependencies are perturbed by a small amount and we then solve this new
perturbed problem. (However, ultimately the problem solved is the original
problem.)

4.2. The horizontal step

The horizontal step is obtained by solving a positive definite system of the
form

(Z"BZ)w = - Z"Vp, 4.3)

and then setting h — Zw. Since Z"BZ is positive definite, the LDL" decom-
position exists, and if LDL"=Z"BZ, then we obtain the solution to (4.3) by
solving

Lw=-Z"Vp, (4.4)
L™w =D7'w. 4.5)

Note that the matrix Z can easily be obtained from the last n —t columns of Q
(Gill and Murray [10]).

As we move from x* to x**! there are essentially 2 problems with regard to the
projected Hessian factors: modifying the factors to include new information
about the change in gradients, and adjusting the factors to reflect changes in Z.

Since the asymptotic convergence rate results obtained so far [7] necessitate
that the projected Hessian approximations approach the true projected Hessian,
our implementation uses a gradient difference approximation technique in the
final stages. That is, when we are sufficiently close to x* so that unit stepsizes
are being attempted, then we approximate

k+1

z{(vZf—l S Vg — 3 A:‘vzdn)zk
K i€l i€l,
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by the method of gradient differences along the columns of Z, (Gill and Murray
[10D).

When we are not in this neighbourhood of x* we feel the above procedure is
probably unjustifiably expensive and furthermore appears unnecessary. There-
fore, in this region we apply the rank-2 updating procedures (suggested by Gill
and Murray for linear constraints) in a straightforward way.

5. Convergence results

This section is organized as follows:
5.1. A number of definitions and assumptions are formally stated.
5.2. The results are stated and proved.

5.1. Definitions and assumptions

(i) The pseudo-value function of p is defined to be

_ _ 1 ‘
p(x, €)= f(x) " ielzu(x) $i(x).

The pseudo-gradient of p is

= _ 1
Vp(x,e)=Vp =Vf(x)—— Vi(x).
p(x,€)=Vp =Vf(x) “ie%:m ¢i(x)

(i) Let A, denote an n X t, matrix whose columns are the gradients of the
e-active constraints. We will always assume A, to be of full rank (= t). The
matrix Z, satisfies Zi{Z, = In-y) and ArZ,=0. The matrix Z,; satisfies
ZIiZing = Lnoy1, and Vi(x*)Zn ;= 0 if i € 15(x")—{j}, for some j € I5(x").
Define

GL(x*) = Vp(x") — 3 MVhi(x"),
iely

where A* is the least squares solution to A\ = Vp (x").

(iii) At times we will consider an arbitrary (usually) but fixed point x. At such
a point, A will denote a matrix whose columns are the gradients of the precisely
active constraints. That is, the columns of A belong to {V¢;(%) | i € I%(X)}. The
matrix Z satisfies ATZ =0, Z*Z = I,_;, where A is n X t and of full rank. If X is a
stationary point, then A satisfies

Vi) - X Véi(®)= A\
ie1%x)
(iv) A vector X is termed a stationary point of p if there exists a vector by

satisfying

V@) -1 S ViR = S AVei(R).

ier%x ie1®
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If X satisfies the above equation and 0 <X =< 1/u, then we call X a first-order
point of p. If 0 <X <1/u, then % is a strict first-order point. If 0 <X < 1/u and

V(-1 3 Ve@- S Ave)y >0
ie1%x) i€l
for all y satisfying ATy =0, y# 0, then we term X a strict second-order point of
p. [The reader is referred to Coleman and Conn [6] for justification of this
terminology.]
(v) We make the following line-search assumption: If h* is a descent direction
for p at x*, then « is determined so that

p(x*) = p(x"* + ah®) = vi((h)'8"), >0,

where

g =TpH -~ S Vi)

iefe(x®)
and
Isx={iery"|veln* <on.

(It is a direct extension of a result of Conn and Pietryzkowski (Proposition 1,
[9]) to show that the above condition be satisfied.)

(vi) Let W denote a compact set, where {x*}€ W.

(vii) Let S, S, S denote the set of stationary points of p in W, the set of
stationary but not first-order points and the set of first-order points respectively.
Note that S=SUS, SNS=¢.

Lemma 1. We assume that

() f, ¢, i =1,..., m are twice continuously differentiable on a compact set W,
where {x*}€ W,

(ii) X is any strict second-order point of p in W,

(iii) the gradients of the active constraints (at X) are linearly independent on
W,

(iv) I¥(x*) =1%%), for all k,

(v) there exist positive constants b,, b, such that for all vectors w €R
w#0,

n—t,
s

bi|wlf = w(ZiBiZ)w =< bo|wl.

Then there exist positive constants A,, A,, and & such that
1) x*-x|=4a,
) ||ZEBka - ZZGL(xk)Zk" =4,

implies that

p(x*+h*+ ") = p(x*) == 8(IZEVp (M3 + @M,
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where

h* =— Zk(ZEBka)']Zva(xk),

vF = — A(ATA) D (x* + hY).
Proof. (To simplify notation, we drop the ‘k’ superscripts and subscripts. In
addition, I, and I, denote I %(%), and IY(X) respectively and we assume that

I,={1,...,t}. Finally, if an argument is unspecified, it is assumed to be x.)
(a) Changes in p. Recall

PO = f(x)—; 3, 6.
By Taylor’s theorem,
p(x+h+0v)=px)+Vp'[h+v]+ilh+0]"Vp[h +v] 5.1
+o(|h + v|P).
Recall
GL(0) = VB(0) — 3 AT,
Thus
h=-2(Z"G.Z)'Z"Vp + ZEZ"Vp, (5.2
where

E=(Z"G.Zz)"'-(Z"BZ)™".
In addition,
Vp = AA + Zw, for some w ER"". (5.3)
Hence, by (5.1), (5.2), and (5.3),
p(x+h+v)—p(x)=—V5"Z(Z'"GLZ)'Z"Vp + \TATv
+3h"V?ph + 30 V?po + KTV pv
+o(|h +v|) + VPZTEZ"Vp. (5.4)
But

v=—A(ATA)'®(x +h), (5.5)
where @ = (¢, ..., ¢,). Since VpTh =0, i € I,, it follows that

¢i(x + h) = ¢i(x) +2h V2 ik + o [). (5.6)
Therefore, by (5.5) and (5.6),

ATAT = —2 N (& + V2 i) + oD,
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Hence (5.4) can be written
t
5x+h+v)—px)=—Vp"(Z"G,2)"Z"Vp + %hT(Vzﬁ -3 Aivchi)h
i=1

t
- N +30 V2 po + h TV po

i=1
+o(|h + v|P) + o(|h|P) + VP ZEZ V. (5.7

But, by the definition of G,

t
W(V%5 - 3 A )h = hTGuh
=Vp"Z(Z"G Z)'Z"Vp — 2Vp"ZEZ'Vp
+Vp ZEZ"G,ZEZ"'Vp
using (5.2). Substituting this expression into (5.7) results in
p(x+h+v)—px)=—3Vp"2(Z"G,.Z)'Z"Vp
t
- \ii + 10TV?pv + KV po.
i=1
+ e(x), (5.8)
where .

e(x) = o(|h + v|) + o(|h|) — VP ZEZ"Vp
+Vp"ZEZ"G,ZEZ'Vp.

(b) Changes in ¢;, i =1,...,t. Using Taylor’s theorem, it is straightforward to
verify that

t

>, min(0, ¢i(x)) — i min(0, ¢i(x + h + v)) =
i=1

t t
<nTd+ —% S 10"V2w| - S [h V2] + o + o|P), (5.9)
=1 =1 :

where n; = 1 if ¢; <0, otherwise n; = 0.
(c) Changes in p. We now combine parts (a) and (b) to obtain

T
p(x +h+v)—p(x)=—1Vp"Z(Z"G,2) " Z"Vp + (‘L )\) o
t
+3|v"V?po| + |h "V po| + i > |0 V|
i=1

71'2 RV | + e(x). (5.10)
But

v=—A(ATA)'®(x + h)
— A(ATA)[® + 3]+ o(|h D), ' (5.11)
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where r = (h"V2é,h, ..., h"V?¢.h)". Define
H,=V*pAATA), H,=(ATA)'A™H,,

H = v2¢,-A(ATA[‘} =1t
Hi — (ATA)—lATHi T Ay ey be
Thus
0"V pv = &(x)"w(x) +3r Hor + o(|h|P), (5.12)

where w(x) = Hy[® + r(x)]. But r"H,r = 0(||h4||), and hence by (5.12)
t
|0 Vpo| %2 &i(x)| - |wix)| + o(|h[P). (5.13)
Similarly, we can define vectors

wWx)=H[ex)+rx)], j=1,..,t

If we let ii; =3}, |ul(x)|, for i =1, ..., t we obtain
t t
1 3 10TV w] =3 3 [6i0] - [w@)| + olhlP. (5.14)

Consider now the terms h"V?pv, h'V’¢, i =1, ...,t. Following lines similar to
that used above, it is straightforward to show

|h"Vpo| = g} lyi(x)| - |i(x)| + o(|R|) (5.15)
and
2 [0 V| = Z 16| - 1500 + ok, (5.16)

where yT= h"H,, s'(x) = hT}_I,-, and §;(x) = 3 -1 |si(x)|. Define
ci(x) = 2wi(x))| ta- Iu.(x)I +— Is )|+ |yi(x)|.

By (5.10), (5.13)—(5.16) (and noting that, for A, sufficiently small, ((ni/u) — )i =
— i = (i)l - i)

p(x+h+v)-px)=- %VﬁTZ(ZTGLz)—'zTVﬁ
+E |>~ B (x)>ld>.(x)| + e(x). (5.17)

By assumption (ii), for A, sufficiently small there exists a positive constant b,
such that

V57Z(Z7G.Z) ' Z"Vp = B?— 1275 (5.18)
2
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Moreover A\;— (/) #0, i=1,...,t and ci(x)—>0 as x> X (by assumption (iv)
and continuity of ¢;). Therefore for A, sufficiently small, and for some §>0,

p(x+h+v)—p(x)=<-35(1Z"Vp |3+ |®|) + e(x). (5.19)
Consider, '

e(x)=o(|h + v|») + o(|h|") — VP ZEZ"Vp
+Vp'ZEZ"G,.ZEZ"Vp.

But

Ih + 0|2 = [K]3 + |Iol2
= L||Z'Vp|3 + La|®|5

L,, L,>0. (Since A(x), (Z"TBZ)™', and Z are bounded on W.) Therefore by (2),
for A,, A, sufficiently small,

e(x) =3 8(1Z"Vp |3+ ||®). (5.20)
Hence, if § =38, by (5.19), (5.20),

p(x+h+v)—px)=-8(Z"Vp|;+| D).

Theorem 1. We assume that ,

(1) the functions f, ¢, 1 =1, ..., m are twice continuously differentiable,

(2) {x*} is generated by Algorithm 2 starting from an arbitrary initial point, and
{x*}€ W, W is compact,

(3) the number of stationary points of p, in W, is finite,

(4) all first-order points of p in W (recall these are denoted S) are strict
second-order points of p,

(5) the vectors V;(x"), i € I%(x") are linearly independent,

(6) the line-search condition is satisfied by Algorithm 1,

(7) if {x%} is a subsequence and % is a first-order point such that

xkisx, and IX(x%) =I%%),

then second-order information is approximated so that

ZiBz,~ 2 (Vi@ -1 3 V- 3 AVE)Z
ier%x) iel1(x)
Then, for all é sufficiently small,
(D) &40,
() x*>x €S,
(3) for k sufficiently large, the ‘Newton step’ is executed.

Proof. Part 1 [If ZiVp(x*) # 0, then —Z,(ZBxZx)'ZVp(x*) (= h*) is a descent
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direction for p, at x*.]

Since V¢ h* =0 for all i € I4(x¥) (5.21)
it follows, by a Taylor expansion,

Pi(x* + ah®) = ¢:(x*) + O(a?, for all i € I¥(x"). (5.22)
Therefore, ‘

p(x* + ah*)=p(x") + aVp(x*)Th* + O(a?). (5.23)
Hence for all a sufficiently small,

p(x* + ah*) < p(x"). (5.24)

Part 2 [If Af€[0,1/u] it follows that h* = ¢¥Z;ZI;Vi(x*) is a descent

direction for p at x*, where of = —sign(A¥).] First we note that

Véi(x*)'h* =0 for all i € I5(x*)—{j}, (5.25)

and therefore
oi(x* + ah®) = ¢i(x*) + O(a?), forieI4(x*)—{j}. (5.26)
Considering (5.25), and (5.26)

p(xk+ah")5p(x")+ag(xk)Thk+O(a2), (5.27)
where
2(x*) = Tp(x*) + % min(0, o)V é; (x*). (5.28)
Case 1: Suppose A <0. Then o; =1 and
g(x")Th* = Vp(x")Th* (using (5.28))
= (AAYTh* (since Vp = A\ +u, ue N(A))

where N(A) denotes the nullspace of A.)
= A[Ve;(x*)"h* (by (5.25))
= MIZEV (I < 0.
Case 2. Suppose Af>1/u. Then o¥=—1 and
g(x*)"h* = (Vp(x*)— 1/uVe;(x*))"h*
=\ =1/p)Ve ! Th*
= (1/n = APIZEV il <.
Therefore, h* is a descent direction for p at x*.
Part 3 [There exist positive scalars A, § such that |x*—%|| <A, x€ S, and
I5(x*) = I%(%) implies that .
(i) AF€[0,1/u] for some j € I4(%), and
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() (h*)'g" <— 8, where
h* = 0 Zi Zi iV $i(x"),

€=Vpuﬁ+%mmwmﬁV@u5J

Since x € S it follows that for some j,

XE[0,1/n] where AX =Vf(5c')—& S Vi) (5.29)

ie1%®

Recall from Section 5.1, part (iii) that quantities are ‘barred’ to indicate that
they are evaluated at x.

Let Z be a matrix with  + 1 orthonormal columns which satisfies V¢ Z =0,
for all i in I%(%) — {j}. Define

h = 6,ZZ"™V ¢;(%),
and

S Vi(X) — min(0, &,-)V¢,~(i)},

iel%)

g =i -+ {

where &; = — sgn(})). _
Case 1: Suppose A; <0. Then g; =1, and

F=Vi@ -1 T V).

iel%x)
Since V¢ h =0 for i € I4(x) —{j}, and considering (5.29) and the definition of g,
—h"g = - \Vi(X)'h =~ M| Z7V ¢l =: 5,

Considering the linear independence assumption, &, >0.
Case 2: Suppose A; > 1/u. Then ;= —1 and

- _ 1 _ 1 _
g=Vfx)—— E Vi(x) —— V;(x).
ie1%s) Lt
Since V¢ Th =0 for i € I%(X) — {j}, and considering (5.25) and the definition of g,
—h'g = (/p — \)V¢i(D)'h
A = UpNZ™V | =: 8.

I

Considering the linear independence assumption, 5,>0.

Since |S] is finite, it is clear that there exists a positive scalar & such that if X is
any member of S, then —h"g = §. By continuity it follows that if |x* — x| =<4,
% € §, and I4(x*) = I%(%), then

(@) Aj &0, 1/pl,

(i) (~h*)'g*=38=:5.
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Part 4 [For all k sufficiently large, the ‘dropping step’ is not executed.]
Rather than consider a subsequence let us assume (without loss of generality)
that the ‘dropping step’ is executed for all k. Then, for some j € I %(x"),

AE[0,1/n] and  h* = ot ZiZinVi(x).

But Algorithm 2 requires that —g(x*)'h*>8, where g(x*)=Vp+
(1/w) min(0, 0¥)V¢;, and therefore, by the line search condition, '

p(x*) = p(x* + axh*) = 8% (5.30)

But (5.30) implies that p(x*)— — », which is contradictory
Part 5 [If x - % then for k; sufficiently large, I%(x*) c I%(%).] Suppose that
I%(x") D I%%). We can assume (without loss of generality) that I Gi(x ki) =
Ek +1r ki +1 .
AT (xS, i=1,.
(1) Suppose ZkVp(x i) 5 0. Then we can assume that hY>h#0. Let I,
denote I ¥(x*) and I, denote I "'(x ). Clearly —g"h >0, where

_ . 1 _
=Vf(®) —=— 2, V(%)
2 i€l
Let B = — g h. By continuity, g - g where
L1 .
g = Vf(x*)—— 3 Vei(x").
2 i€l,

Hence for k; sufficiently large —(h*)Tgki = 23 By Part 4, h" is a descent direction
for p and therefore, applying the line search condition,

p(x*) = p(x* + ah®) = 8:(B[2)".

It follows that p(x*)—> — o, a contradiction.

(11) Suppose ZTVp(x")—>0 Since I§«g I%(X), it follows that for some j,
c,(x )5 0. A consequence of this is that A, —0. (Suppose A, 0. By part 4, the
Newton step is attempted for all k sufficiently large. Since p is bounded below and
Ci (x*%) 0 it follows that for k sufficiently large the Newton step is unsuccessfully
attempted This implies A,—>0 and ¢ —0.) But &—0, and x % 5% implies
- I(xM) C I'N(X).

Part 6 [The ‘Newton-step’ is successful for all k sufficiently large, &+ 0, and
x*>x €8] ‘

(i) Suppose € —>0. Then A, —0 and therefore ZIﬁp(x"f)—->0 for some sub-
sequence {x"}. (Suppose ZiVp(x*)-50, for any subsequence {x"}. Then, for all k
sufficiently large ZiVp(x*)> A,. By Algorithm 2, it follows that A, is not
reduced, for all k sufficiently large, and thus A;+0.) Therefore we have a
convergent subsequence {x"}— X and Z{Vp (x%)— 0. By Part 5, for k sufficiently
large, Ix(x*)CI%%). However, the linear independence assumption and
ZTVp(x i)—0, forces I fi(xk)y=1 A(x) Cons1dermg Parts 3 and 4, it follows that
for at least one subsequence {x" } x> x e S, and I¥(x%) =I%%). By Lemma 1,
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for k; sufficiently large, iterations k;+ 1, k;+2,...will be ‘Newton-steps’. It
follows that €, 0.

(ii) Suppose €+ 0. Thus ¢ = € >0, for k sufficiently large. By Part 5 it follows
that there exists a subsequence {x} such that x* — %, and I5(x*) = I%(x). Using
an argument identical to that used in Part 5(i), we can establish that x € S. By
Parts 3 and 4, x € S. By Lemma 1 and the boundedness of p, for k; sufficiently
large, iterations k := k; + 1, k; + 2, ... are Newton steps and xk>xe .

6. Numerical results

We present here a brief summary of numerical results obtained on a number
of test problems. We feel that these results indicate that the proposed algorithm
has a promising future. '

In Table 1 is a chart of the best and worst results achieved by our method for
various initial parameter choices in the indicated parameter choices in the
indicated range. We list our starting point in every case. The ‘accuracy’ column
indicates the number of significant digits achieved (x-values)

Table 1
€:1-5.
1 :0.001-1.
TOL:107?
5:107¢
A :0.001-0.1
Problem Initial point accuracy Penalty function evaluations
(Best) (Worst)
Rosen-Suzuki [14] 0,0,0,0) 8 19 37
Wong in [1] (3,3,0,4,1,3,0) 5 69 75
(1,2,0,4,1,1) 5 50 64
Powell [13] (-2,2,2,-1,-1) 7 5 15
(-1.5,15,2,-1,-1) 7 5 15
Colville 1 [8] 0,0,0,0,1) 4 11 11
fChamberlain 1 [3] (0,0) 8 6 6
tChamberlain 2 1,5) 8 4 4
Colville 3 [8] (78, 62,33, 44,31.07, 5 14 19
44.18,35.22)
(78, 33,27,27,27) 5 6 18
Colville 2 [8] x; = 0.001,i=7, x; =60 6 87 179

t These problems were designed by Chamberlain [3] to demonstrate cycling behaviour of a
successive quadratic programming algorithm. We note that our method converges rapidly.

7. Concluding remarks

The numerical and theoretical results given here (see also [7]) suggest that the
proposed algorithm is an efficient and reliable way to solve the well-scaled
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nonlinear programming problem. The method possesses both global and super-
linear convergence properties: it is not necessary that the full (n X n) Lagrangian
Hessian be positive definite at the solution. The method is computational
efficient: it is not required that the projected Hessian be approximated by the
expensive gradient difference method except in the final stages of convergence.

Further developments are expected to include a full projected Quasi-Newton
implementation, and scaling considerations.
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